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ABSTRACT 

This study presents free vibration analysis of thin rectangular CCSS plate. The formulated flexural element stiffness 

matrix using finite element method for a selected shape function was used to determine the fundamental natural 

frequency of CCSS plate under vibration. This study displayed the finite element continuum of CCSS boundary 

condition through the formulation of the stiffness matrix K and inertia matrix Kλ . The result of discretization of the 

plate showed the importance of finite element method as approximate method of analysis. The initial resonating 

frequency at a grid size of n=1 and aspect ratio α=1 was obtained with the formulated stiffness matrix. The 

fundamental natural frequency λ for other aspect ratios ranging from 1.1 to 2.0 at an increment of 0.1 and grid size 

n=3 to n=17 was determined. The fundamental natural frequencies under grid size n=17 closest to the solution was 

used to compare other approximate methods of Njoku, [4], Sakata et al, [10], and Chakravarty, [1]. It was observed 

from percentage difference ranging from 0.4620% to 0.6229% that the present study and other approximate 

methods are close. Therefore, we can draw conclusion that the present approximate method of analysis is 

acceptable for analyzing plates in vibration. 

Keywords: Vibration, Analysis of Rectangular Thin Pate, Finite Element Method, Stiffness, Fundamental Natural 

Frequency,  

 

INTRODUCTION 

Structural elements have a wide range of applications 

in engineering. Thin plates are one of these 

applications that undergoes a wide range of excitations 

that result to vibration. The wide use of this kind of 

structures requires a complete investigation of the 

dynamic behavior in order to develop accurate and 

reliable design. Uncontrolled vibration can damage 

mechanical system (like Plates) and most of the time 

render it ineffective for use in its entire life. It is 

therefore recommended that a proper method of 

analysis should be used to investigate the adequate 

natural frequency of any vibrating system before use. 

Finite element analysis is a good approximate method 

for analyzing plate structures in vibration. The Finite 

Element Method (FEM) involves division of a 

structure into discrete elements interconnected at 

selected nodes. The deformation of each element is 

expressed by interpolating polynomials whose 

coefficient are defined in terms of Degrees of Freedom 

(DOF) that describes the displacements and slopes of 

selected nodes on the element. Nikolas, [6]. The fourth 

order differential equation with the flexural continuum 
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energy approach was applied on the selected shape 

function by using Finite Element Method. At the 

central deflection of the plate, the corresponding 

resonating frequency was obtained by application of 

CCSS plate boundary condition on the formulated 

flexural stiffness matrix of the plate. 

Free vibration analysis of thin rectangular plates that 

are clamped on adjacent edges and simply supported 

on opposite adjacent edge (CCSS) has been analyzed 

using various approach by many researchers in the 

past to obtain the resonating natural frequency  Okafor 

and udeh[8], Sakata et al [10],Chakraverty [1], Supun 

and Seyed [11]. The use of variational calculus of 

fourth order differential equation by these scholars 

Njoku [6], Ibearugbulem et al [2], Ibearugbulem et al, 

[3], Oba et al [8], Ezeh et al [4] to obtain the natural 

frequency of plate. The use of finite element method 

to determine vibration frequencies and compare them 

with Levy type solution. Ramu and Mohanty [9].  The 

Formulated Flexural Element Stiffness Matrix in 

Finite Element Method to compute the natural 

frequency of CCSS plate has not being used by any 

scholar in the past. The use of other approximate 

method can be time consuming and complex in 

obtaining solution. Hence Finite Element Method is a 

powerful approximate method that has an advantage 

due to its amenability to computer program for quick 

and accurate analysis. The main purpose of this 

present study is to use the Formulated Flexural 

Stiffness Matrix in Finite Element Method to analyze 

free vibration of thin rectangular plate clamped on two 

adjacent edges and simply supported on the opposite 

adjacent edges (CCSS). 

GORVERNING DIFFERENTIAL 

EQUATION FOR TOTAL STRAIN 

ENERGY OF PLATE IN VIBRATION. 

The governing differential equation for total strain 

energy of plate in vibration is given in Equation (1); 

Π=
𝐷

2
∫ ∫ [[

𝜕2𝑤

𝜕𝑥2]
2

+ 2 [
𝜕2𝑤

𝜕𝑥𝜕𝑦
]
2

+
𝑏

0

𝑎

0

[
𝜕2𝑤

𝜕𝑦2]
2

𝜕𝑥𝜕𝑦] −
𝑚𝜆2

2
∫∫𝑤2𝜕𝑥𝜕𝑦  = 0   (1)  

 

 

Where D is the flexural rigidity of the plate.  

m is the mass per unit area of the thin plate.  

w is the displacement of the plate. 

 is the fundamental natural frequency of the thin 

plate. 

The flexural rigidity D of the thin plate is expressed in 

Equation (2); 

𝐷 =
𝐸ℎ

3

12(1−𝜐2)
                                                   (2)

                                                                                                                  
 

E = Modulus of elasticity 

h = Plate thickness 

v = Poisson’s ratio. 

Equation (1) is the main equation for the derivation of 

the Flexural Element Stiffness Matrix. 

FLEXURAL ELEMENT STIFFNESS 

MATRIX FORMULATION. 

Ibearugbulem et al [2] expressed the deflection 

equation ‘w’ of a plate in Equation 3; 

[𝑤]=[𝑁][𝜓]                                                                     (3)
                                                                                                                                                                   

Where, w = deflection of plate 

[𝑁]=deflection shape function                                     

[𝜓] = coefficients of the displacements i.e. for rotation 

and deflection of plate. 

[𝑤𝑖]=[𝑁𝑖][𝜓]                                                            (4)                                                                                                                                                 

Let [𝑤𝑖] = deflection and rotation at the nodes of the 

thin plate. 

[𝑁𝑖]= The square matrix of nodal value displacement 

profile of plate. 

Equation (4) can be re-arranged as expressed in 

Equation (5); 

[𝜓]=[𝑁𝑖
−1]𝑇[𝑤𝑖]                                                                      (5) 

We obtain the new expression of deflection w in 

Equation (6) by substituting Equation (5) into 

Equation (3) 

 𝑤 = [𝑁][𝑁𝑖
−1]𝑇[𝑤𝑖]                                          (6) 
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Substituting Equation (6) into Equation (1) yields 

Equation (7) 

,∏ =
𝐷

2
[∫ ∫ [[𝑁][𝑁𝑖

−1]𝑇[𝑤𝑖]]
𝑥

 ′ ′𝑏

0

𝑎

0
]
2

𝑑𝑥𝑑𝑦 +

𝐷 [∫ ∫ [[𝑁][𝑁𝑖
−1]𝑇[𝑤𝑖]]

𝑥𝑦

′′𝑏

0

𝑎

0
]
2

𝑑𝑥𝑑𝑦 

+
𝐷

2
[∫ ∫ [[𝑁][𝑁𝑖

−1]𝑇[𝑤𝑖]]
𝑦

 ′ ′𝑏

0

𝑎

0
]
2

𝑑𝑥𝑑𝑦 −

𝑚𝜆2

2
[∫ ∫[[𝑁][𝑁𝑖

−1]𝑇[𝑤𝑖]]
2

] 𝑑𝑥𝑑𝑦                       (7)

                                   

                 

 
Expand Equation (7) to obtain Equation (8). 

𝐷

2
[𝑁𝑖

−1]𝑇 [𝑤𝑖]
𝑇 ∫ ∫ [[𝑁]𝑇[𝑁]]

𝑥

′′𝑏

0

𝑎

0
𝑑𝑥𝑑𝑦. [𝑁𝑖

−1][𝑤𝑖] +

𝐷[𝑁𝑖
−1]𝑇 [𝑤𝑖]

𝑇 ∫ ∫ [[𝑁]𝑇[𝑁]]
𝑥𝑦

′′𝑏

0

𝑎

0
𝑑𝑥𝑑𝑦. [𝑁𝑖

−1][𝑤𝑖]               

                                                                     

+
𝐷

2
[𝑁𝑖

−1]𝑇 [𝑤𝑖]
𝑇 ∫ ∫ [[𝑁]𝑇[𝑁]]

𝑦

′′𝑏

0

𝑎

0
𝑑𝑥𝑑𝑦. [𝑁𝑖

−1][𝑤𝑖]      

                                                             

−
𝑚𝜆2

2
[𝑁𝑖

−1]𝑇 [𝑤𝑖]
𝑇 ∫∫[[𝑁]𝑇[𝑁]] 𝑑𝑥𝑑𝑦. [𝑁𝑖

−1][𝑤𝑖]     

                                                                                 (8) 

Extracting the constants  [𝑁𝑖
−1]𝑇 and [𝑤𝑖]

𝑇

 
and 

minimizing Equation (8) by differentiating with 

respect to  iw yields Equation (9).  

∏ = [𝑁𝑖
−1]𝑇 𝐷. ∫ ∫ [[𝑁]′′𝑇[𝑁]′′]𝑥

𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦. [𝑤𝑖][𝑁𝑖
−1]    

 

+[𝑁𝑖
−1]𝑇 2𝐷. ∫ ∫ [[𝑁]′′𝑇[𝑁]′′]𝑥𝑦

𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦. [𝑤𝑖][𝑁𝑖
−1]

 

+[𝑁𝑖
−1]𝑇 𝐷. ∫ ∫ [[𝑁]′′𝑇[𝑁]′′]𝑦

𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦. [𝑤𝑖][𝑁𝑖
−1]

 

−[𝑁𝑖
−1]𝑇 𝑚𝜆2.  ∫ ∫[[𝑁]𝑇[𝑁] ] 𝑑𝑥𝑑𝑦. [𝑤𝑖][𝑁𝑖

−1]
    

                                                                                 (9)                                                                                        

Equation (9) is called the General Flexural Element 

Stiffness Matrix Equation of thin rectangular plate. 

Equation (9) expressed in dimensionless R-Q 

coordinate system yields Equation (10). 

∏

= [𝑁𝑖
−1]𝑇

𝐷

𝑎4
 ∫ ∫ [[𝑁]′′𝑇[𝑁]′′]𝑅

1

0

1

0

𝑑𝑅𝑑𝑄 . [𝑤𝑖][𝑁𝑖
−1] 

+[𝑁𝑖
−1]𝑇

2𝐷

𝑎4𝛼2
 ∫ ∫ [[𝑁]′′𝑇[𝑁]′′]𝑅𝑄

1

0

1

0

𝑑𝑅𝑑𝑄 . [𝑤𝑖][𝑁𝑖
−1]

 

+[𝑁𝑖
−1]𝑇

𝐷

𝑎4𝛼4
∫ ∫ [[𝑁]′′𝑇[𝑁]′′]𝑄

1

0

1

0

𝑑𝑅𝑑𝑄 . [𝑤𝑖][𝑁𝑖
−1]

 

−[𝑁𝑖
−1]𝑇 𝑚𝜆2  ∫ ∫[[𝑁]𝑇[𝑁] ] 𝑑𝑅𝑑𝑄 . [𝑤𝑖][𝑁𝑖

−1]
               

                                                                  (10)                                               
 

Equation (10) is called the General Flexural Element 

Stiffness Matrix of thin rectangular plate for non-

dimensional coordinates. 

Where 𝑅 =
𝑥

𝑎
   ,   𝑄 =

𝑦

𝑏
  ,  𝑑𝑥 = 𝑎𝑑𝑅 ,  𝑑𝑦 =

𝑏𝑑𝑄 𝑎𝑛𝑑 𝛼 =
𝑏

𝑎
 

 𝛼 is the aspect ratio while R and Q are non-

dimensional axis parallel to x and y axis.

 
DETERMINATION OF DISPLACEMENT 

PROFILE FROM THE CHOSEN SHAPE 

FUNCTION OF THE PLATE. 

A chosen shape function of the plate N is expressed in 

Equation (11). 

N   

[1 𝑅 𝑄 𝑅2 𝑅𝑄 𝑄2 𝑅3 𝑅2𝑄 𝑅𝑄2 𝑄3 𝑅3𝑄 𝑅𝑄3]     

                                                                               (11) 

Ibearugbulem, [2].  

Where R2 and Q2 denote R2 and Q2 respectively. 

 Figure 1 is a rectangular plate model that shows the 

12 degrees of freedom of plate which will result to 12 

by 12 matrix required for solution. a and b are the 

aspect ratio which is assumed to be 1. w, R  and Q

are deflection, rotation about R and Q axis at the node.   

                        
𝑄

     
 

 

 

 

𝜃𝑅3 

𝑤401 

𝜃𝑄3 

𝜃𝑅4 

𝜃𝑅1 
𝜃𝑄1 

𝜃𝑄4 

𝑤311 

b=1 

𝜃𝑄2 
𝜃𝑅2 
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Figure 1.  A thin plate with 12 degrees of freedom and 

nodal coordinates. 

 𝜃𝑅 and 𝜃𝑄 are obtained by differentiating Equation 

(11) with respect to R and Q. Hence the nodal 

displacement profile of the plate [𝑁𝑖]  is expressed in 

Equation (12). 

 

 iN     

[
1 𝑅 𝑄  𝑅2  𝑅𝑄  𝑄2 𝑅3    𝑅2𝑄   𝑅𝑄2   𝑄3   𝑅3𝑄    𝑅𝑄3 
0 1 0  2𝑅   𝑄    0   3𝑅2  2𝑅𝑄   𝑄2     0     3𝑅2𝑄  𝑄3
0 0 1   0   𝑅    2𝑄  0     𝑅2     2𝑅𝑄   3𝑄2  𝑅3     3𝑅𝑄2

]
𝑁
𝜃𝑅
𝜃𝑄

               

                                                                               (12)     

In addition, using the nodal values corresponding to 

the coordinate of each of the node in the entire plate 

model, the square matrix of the nodal displacement 

profile of the thin plate is obtained in Equation (13). 

[𝑁𝑖] =        

[
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0
0 1 0 2 0 0 3 0 0 0 0 0
0 0 1 0 1 0 0 1 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 2 1 0 3 2 1 0 3 1
0 0 1 0 1 2 0 1 2 3 1 3
1 0 1 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0 1 0 0 1
0 0 1 0 0 2 0 0 0 3 0 0]

 
 
 
 
 
 
 
 
 
 
 

 

Applying the square matrix of the displacement profile 

and the plate shape function matrix into the general 

flexural element stiffness matrix equation, the 

fundamental natural frequency  of the plate can be 

obtained. 

FORMULATION OF THE RESONATING 

FREQUENCY EQUATION. 

The general flexural element stiffness matrix equation 

of the plate can be reduced to the following equations. 

Let   𝐾𝑅 =

[𝑁𝑖
−1]𝑇  ∫ ∫ [[𝑁]′′𝑇[𝑁]′′]𝑅

1

0

1

0
 𝑑𝑅𝑑𝑄 . [𝑤𝑖][𝑁𝑖

−1]
                  

                                                                               
(14)

𝐾𝑅𝑄 =

2[𝑁𝑖
−1]𝑇  ∫ ∫ [[𝑁]′′𝑇[𝑁]′′]𝑅𝑄

1

0

1

0
 𝑑𝑅𝑑𝑄 . [𝑤𝑖][𝑁𝑖

−1]
               

                                                                               (15)  

𝐾𝑄 =

[𝑁𝑖
−1]𝑇  ∫ ∫ [[𝑁]′′𝑇[𝑁]′′]𝑄 

1

0

1

0
𝑑𝑅𝑑𝑄 . [𝑤𝑖][𝑁𝑖

−1]
                  

                                                                               (16)  

𝐾𝜆 =

 −[𝑁𝑖
−1]𝑇  ∫ ∫[[𝑁]𝑇[𝑁] ]   𝑑𝑅𝑑𝑄 . [𝑤𝑖][𝑁𝑖

−1]
                

                                                                               (17)
 

Where K is referred to as inertia matrix. Substituting 

Equation (14),(15),(16) and (17) 

into Equation (10) yields Equation (18). 

∏ = 
𝐷

𝑎4
[𝐾𝑅] +

𝐷

𝑎4𝛼2 [𝐾𝑅𝑄] +
𝐷

𝑎4𝛼4 [𝐾𝑄] − 𝑚𝜆2[𝐾𝜆]                                                                                                  

The governing differential equation of plate in 

vibration stated in Equation (10) can be reduced to 

Equation (19). 

∏ =
𝐷

𝑎4
[𝐾𝑅] +

𝐷

𝑎4𝛼2 [𝐾𝑅𝑄] +
𝐷

𝑎4𝛼4 [𝐾𝑄] −

𝑚𝜆2[𝐾𝜆] = 0
                                                                                           

𝑚𝜆2[𝐾𝜆] =  
𝐷

𝑎4
[𝐾𝑅] +

𝐷

𝑎4𝛼2 [𝐾𝑅𝑄] +
𝐷

𝑎4𝛼4 [𝐾𝑄]
                                                                                                         

Also, bringing out like terms in Equation (20) yields 

Equation (21). 

𝑚𝜆2[𝐾𝜆] =  
𝐷

𝑎4 [𝐾𝑅 +
1

𝛼2 𝐾𝑅𝑄 +
1

𝛼4 𝐾𝑄]
                     (21)                                                                                                     

𝜆2 = 
𝐷

𝑚𝑎4

[𝐾𝑅+
1

𝛼2𝐾𝑅𝑄+
1

𝛼4𝐾𝑄]

[𝐾𝜆]                                       (22)                                                                                                       

𝜆 = 
1

𝑎2
√𝐷

𝑚
.
[𝐾𝑅+

1

𝛼2𝐾𝑅𝑄+
1

𝛼4𝐾𝑄]

[𝐾𝜆]                               (23)                                                                                                       

Equation (23) is the resonating frequency equation of 

a plate in free vibration. 

𝑤2 10 

𝑤100 

00 

(13) 

𝑤210 

00 

a=1 

(18) 

(20) 

(19) 

𝑅 

00 
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FINITE ELEMENT AND BOUNDARY 

CONDITION APPLICATION ON CCSS 

PLATE 

 

 

 

 

 

 

 

 

 

Figure 2.  A CCSS thin plate with 5 degrees of freedom 

and 3 nodes. 

The plate is divided into 4 finite elements as shown in 

Figure 2. It has a total number of 3 deformable nodes 

and 5 nodal displacements as listed.  

 𝑤1,𝜃𝑥1,𝜃𝑦1 at node 1, 𝜃𝑥2 at node 2, 𝜃𝑦3 at node 3. 

 

BOUNDARY CONDITIONS FOR CCSS 

THIN PLATE. 

At clamped edge R direction; 

𝑤𝑅 (𝑅 = 0) =  0   (24)   𝜃𝑋𝑅 (𝑅 = 0) =  0   (26)     

𝜃𝑌𝑅 (𝑅 = 0) =  0 (28) 𝑤𝑅 (𝑅 = 𝑎) =  0 (25)    

𝜃𝑋𝑅 (𝑅 = 𝑎) =  0     (27)    𝜃𝑌𝑅 (𝑅 = 𝑎) =  0       (29) 

At clamped edge Q direction; 

𝑤𝑄 (𝑄 = 0) =  0   (30)    𝜃𝑋𝑄 (𝑄 = 0) =  0  (32)     

𝜃𝑌𝑄 (𝑄 = 0) =  0    (34)     𝑤𝑄 (𝑄 = 𝑏) =  0      (31)   

𝜃𝑋𝑄 (𝑄 = 𝑏) =  0   (33)      𝜃𝑌𝑄 (𝑄 = 𝑏) =  0   (35) 

 

 

 

 

At simply supported edge R direction; 

𝑤𝑅 (𝑅 = 0) =  0 (36) 𝜃𝑋𝑅 (𝑅 = 0) =  0 (38)     

𝜃𝑌𝑅 (𝑅 = 0) =  𝜃𝑦 (40)   𝑤𝑅 (𝑅 = 𝑎) =  0   (37)       

𝜃𝑋𝑅 (𝑅 = 𝑎) =  0  (39)   𝜃𝑌𝑅 (𝑅 = 𝑎) =  𝜃𝑦      (41) 

At simply supported edge Q direction; 

𝑤𝑄 (𝑄 = 0) =  0   (42)       𝜃𝑋𝑄 (𝑄 = 0) =  𝜃𝑥     (44)     

𝜃𝑌𝑄 (𝑄 = 0) =  0 (46)   𝑤𝑄 (𝑄 = 𝑏) =  0  (43)       

𝜃𝑋𝑄 (𝑄 = 𝑏) =  𝜃𝑥(45)     𝜃𝑌𝑄 (𝑄 = 𝑏) =  0        (47) 

The value of these displacements is obtained from the 

following individual stiffness matrixes 

KR, KRQ, KQ which is then summed to obtain the 

general stiffness matrix K and inertia matrix Kλ of the 

plate. The individual numerical stiffness matrix 

obtained from the global plate model in Figure 1 are 

shown in Equations (48),(49),(50) and (51).  

 

 

 

 

 

𝐾𝑅

=

[
 
 
 
 
 
 
 
 
 
 
 

4 2 0 −4 2 0 −2 1 0 2 1 0
2 1.33333 0 −2 0.66667 0 −1 0.33333 0 1 0.66667 0
0 0 0 0 0 0 0 0 0 0 0 0

−4 −2 0 4 −2 0 2 −1 0 −2 −1 0
2 0.66667 0 −2 1.33333 0 −1 0.66667 0 1 0.33333 0
0 0 0 0 0 0 0 0 0 0 0 0

−2 −1 0 2 −1 0 4 −2 0 −4 −2 0
1 0.33333 0 −1 0.66667 0 −2 1.33333 0 2 0.66667 0
0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 −2 1 0 −4 2 0 4 2 0
1 0.66667 0 −1 0.33333 0 −2 0.66667 0 2 1.33333 0
0 0 0 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 

 

𝐾𝑅𝑄

=

[
 
 
 
 
 
 
 
 
 
 
 

2.8 0.2 0.2 −2.8 0.2 −0.2 2.8 −0.2 −0.2 −2.8 −0.2 0.2
0.2 0.2667 0 −0.2 −0.067 0 0.2 0.0667 0 −0.2 −0.267 0
0.2 0 0.2667 −0.2 0 −0.267 0.2 0 0.0667 −0.2 0 −0.067

−2.8 −0.2 −0.2 2.8 0.2 0.2 −2.8 0.2 0.2 2.8 0.2 −0.2
0.2 −0.067 0 −0.2 0.2667 0 0.2 −0.267 0 −0.2 0.0667 0

−0.2 0 −0.267 0.2 0 0.2667 −0.2 0 −0.067 0.2 0 0.0667
2.8 0.2 0.2 −2.8 0.2 −0.2 2.8 −0.2 −0.2 −2.8 −0.2 0.2

−0.2 0.0667 0 0.2 −0.267 0 −0.2 0.2667 0 0.2 −0.067 0
−0.2 0 0.0667 0.2 0 −0.067 −0.2 0 0.2667 0.2 0 −0.267
−2.8 −0.2 −0.2 2.8 −0.2 0.2 −2.8 0.2 0.2 2.8 0.2 −0.2
−0.2 −0.267 0 0.2 0.0667 0 −0.2 −0.067 0 0.2 0.2667 0
0.2 0 −0.067 −0.2 0 0.0667 0.2 0 −0.267 −0.2 0 0.2667 ]

 
 
 
 
 
 
 
 
 
 
 

 

θY1 
E2 

E1 

θX1 W1 

E4 
E3 

C  
  θX2   S 

C  

 

b 

a 

     S 

    θy3 

 

2 
 

    R 

 

 

 

 
    Q 

a/2 a/2 

b/2 

b/2 

(48) 

(49) 
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𝐾𝜆 =

 

 

application of boundary conditions of CCSS plate 

listed from Equation (24) to Equation (47) yields a 5x5 

stiffness matrix Equation for K and Kλ expressed in 

Equation (52) and Equation (53) 

respectively. Where aspect ratio α=1 

[𝐾 ] =   [𝐾𝑅 +
1

𝛼2
𝐾𝑅𝑄 +

1

𝛼4
𝐾𝑄]

=

[
 
 
 
 
43.2 0.4 0 4.4 4.4
0.4 6.4 0 1.1994 0
0 0 6.4 0 1.1994

0.4 1.1994 0 3.2 0
4.4 0 1.1994 0 3.2 ]

 
 
 
 

 

𝐾𝜆

= 

[
 
 
 
 

0.54824 0 0 −0.02174 −0.02174
0 0.01268 0 −0.00476 0
0 0 0.01268 0 −0.00476

−0.02174 −0.00476 0 0.00634 0.00111
−0.02174 0 −0.00476 0.00111 0.00634 ]

 
 
 
 

 

 

RESULTS AND DISCUSSION 

The resonating natural frequency of CCSS plate of odd 

number grid size (i.e. plates divided into elements with 

                                                             
 

central deflection as the point of consideration) was 

computed using Equation (23). For aspect ratio of 1 

and grid size 1 the resonating natural frequency which 

is an eigenvalue problem was obtained as expressed in 

Equation (56). The remaining aspect ratios with 0.1 

increment and the corresponding odd number grid size 

(n) ranging from 3.0 to 17 was computed. The grid size 

was to reflect the features of finite element as an 

approximate method of solution. Validation of the 

solution of this study was critically shown in Table 2. 

A comparison of this study was made with the 

solutions from other approximate methods like Njoku, 

[5], Sakata et al, [10] and Chakravarty,[1].  

𝜆2 = 
𝐷

𝑚𝑎4 50.7068
                                                          (54) 

For one element, a = 0.5a 

 
𝜆2 = 

𝐷

𝑚(0.5𝑎)4
50.7068

                                                    (55)  

𝐾𝑄

=

[
 
 
 
 
 
 
 
 
 
 
 

4 0 2 2 0 1 −2 0 1 −4 0 2
0 0 0 0 0 0 0 0 0 0 0 0
2 0 1.3333 1 0 0.6667 −1 0 0.3333 −2 0 0.6667
2 0 1 4 0 2 −4 0 2 −2 0 1
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0.6667 2 0 1.3333 −2 0 0.6667 −1 0 0.3333

−2 0 −1 −4 0 −2 4 0 −2 2 0 −1
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0.3333 2 0 0.6667 −2 0 1.3333 −1 0 0.6667

−4 0 −2 −2 0 −1 2 0 −1 4 0 −2
0 0 0 0 0 0 0 0 0 0 0 0
2 0 0.6667 1 0 0.3333 −1 0 0.6667 −2 0 1.3333]

 
 
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
 

0.13706 0.01829 0.01829 0.04865 −0.01087 0.00790 0.01563 −0.00460 −0.00460 0.04865 0.00790 −0.01087
0.01829 0.00317 0.00250 0.01087 −0.00238 0.00167 0.00460 −0.00119 −0.00111 0.00790 0.00159 −0.00167
0.01829 0.00250 0.00317 0.00790 −0.00167 0.00159 0.00460 −0.00111 −0.00119 0.01087 0.00167 −0.00238
0.04865 0.01087 0.00790 0.13706 −0.01829 0.01829 0.04865 −0.00790 −0.01087 0.01563 0.00460 −0.00460

−0.01087 −0.00238 −0.00167 −0.01829 0.00317 −0.00250 −0.00790 0.00159 0.00167 −0.00460 −0.00119 0.00111
0.00790 0.00167 0.00159 0.01829 −0.00250 0.00317 0.01087 −0.00167 −0.00238 0.00460 0.00111 −0.00119
0.01563 0.00460 0.00460 0.04865 −0.00790 0.01087 0.13706 −0.01829 −0.01829 0.04865 0.01087 −0.00790

−0.00460 −0.00119 −0.00111 −0.00790 0.00159 −0.00167 −0.01829 0.00317 0.00250 −0.01087 −0.00238 0.00167
−0.00460 −0.00111 −0.00119 −0.01087 0.00167 −0.00238 −0.01829 0.00250 0.00317 −0.00790 −0.00167 0.00159
0.04865 0.00790 0.01087 0.01563 −0.00460 0.00460 0.04865 −0.01087 −0.00790 0.13706 0.01829 −0.01829
0.00790 0.00159 0.00167 0.00460 −0.00119 0.00111 0.01087 −0.00238 −0.00167 0.01829 0.00317 −0.00250

−0.01087 −0.00167 −0.00238 −0.00460 0.00111 −0.00119 −0.00790 0.00167 0.00159 −0.01829 −0.00250 0.00317 ]
 
 
 
 
 
 
 
 
 
 
 

 
(51) 

(50) 

(52) 

(53) 
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𝜆 = 28.4835 
1

𝑎2 √
𝐷

𝑚                                                        (56) 

Table 1. The natural frequency (𝝀)for different aspect ratio and grid size (n) for CCSS plates. 

Aspect 

ratio 

α = b/a 

Natural 

Frequency

(𝜆) For 

Grid size     

 n = 3 

Natural 

Frequency

(𝜆) For 

Grid size   

n = 5 

Natural 

Frequency

(𝜆) For 

Grid size 

    n = 7 

Natural 

Frequency

(𝜆) For 

Grid size 

    n = 9 

Natural 

Frequency

(𝜆) For 

Grid size   

n = 11 

Natural 

Frequency

(𝜆) For    

Grid size 

    n = 13 

Natural 

Frequency

(𝜆) For 

Grid size 

    n = 15 

Natural 

Frequency

(𝜆)For 

Grid size 

    n = 17 

1.0 26.20237 26.63259 26.80778 26.89367 26.94168 26.9711 26.99038 27.00369 

1.1 23.95566 24.35108 24.51207 24.591 24.63512 24.66215 24.67987 24.6921 

1.2 22.2895 22.66248 22.81424 22.88865 22.93024 22.95573 22.97244 22.98396 

1.3 21.02467 21.38322 21.52896 21.60042 21.64037 21.66485 21.68089 21.69196 

1.4 20.04478 20.39426 20.53606 20.60559 20.64446 20.66828 20.6839 20.69467 

1.5 19.27194 19.61599 19.75524 19.82351 19.86168 19.88507 19.9004 19.91098 

1.6 18.65261 18.99381 19.13144 19.19888 19.23695 19.2597 19.27485 19.2853 

1.7 18.14914 18.48938 18.62601 18.69293 18.73034 18.75328 18.76831 18.77867 

1.8 17.73452 18.07524 18.21131 18.2779 18.31513 18.33795 18.35291 18.36322 

1.9 17.38896 17.73136 17.86717 17.93358 17.9707 17.99344 18.00835 18.01864 

2.0 17.09779 17.44289 17.57867 17.64498 17.68203 17.70474 17.71962 17.72989 

Table 2. Results of natural frequency (𝝀) for CCSS plate of present study and the results of previous studies 

with their percentage differences for different aspect ratio. 

Aspect 

ratio 

α = b/a 

Present Study 

  (𝜆1) 

For grid size 

n=17 

Njoku, 

[5]  (𝜆2) 

Sakata  et al, 

[10]  (𝜆3) 

Chakra- 

Verty [1] 

   (𝜆4) 

Percentage  

Difference 

 For 

(𝜆2)&(𝜆1) 

Percentage  

Difference  

For 

 3 &  1  

Percentage  

Difference  

For 

 4 &  1  

1.0 27.00369 27.12846 26.867 27.055   0.4620  0.5062  0.1900 

1.1 24.69210 24.80760       -       -   0.4677       -       - 

1.2 22.98396 23.09477       -       -   0.4821       -       - 

1.3 21.69196 21.80073       -       -   0.5014       -       - 

1.4 20.69467 20.80073       -       -   0.5125       -       - 

1.5 19.91098 20.01935       -       -   0.5443       -       - 

1.6 19.28530 19.39417       -       -   0.5645       -       - 

1.7 18.77867 18.88809       -       -   0.5826       -       - 

1.8 18.36322 18.47313       -       -   0.5985       -       - 

1.9 18.01864 18.12889       -       -   0.6118       -       - 

2.0 17.72989 17.84034 17.770       -   0.6229  0.2262       - 
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Table 1. shows the resonating frequency (λ) of various 

odd number grid size (n). It was observed that the 

accuracy of the result increases with the increase in 

grid size. The increment in grid size shows the number 

of discretization the plate element undergoes which is 

one of the importance of finite element method. For 

aspect ratio of 1.2, the results of the natural frequency 

(λ) for grid size n=3 and n=17 are 22.2895 and 22.9724 

respectively. Comparing the present solution as shown 

in table 2. with the solution given by Sakata et al, [10], 

Chakraverty,[1] and Njoku,[5] for an aspect ratio of 

1.0 and grid size n=17, the resonating frequencies of 

these approximate methods are 26.867,27.055 and 

27.12846 respectively. The corresponding percentage 

difference between the present study and other 

methods are 0.5062%, 0.1900% and 0.4614% 

respectively which shows how close their solutions 

are. The same comparison was done for aspect ratio 

2.0 of the same grid size (n=17) on corresponding 

approximate solutions obtained by Sakata et al, [10], 

and Njoku,[5]. The percentage differences obtained 

were 0.2262% and 0.6229%. Hence, it can be deduced 

that the Formulated Flexural Element Stiffness Matrix 

in Finite Element Method for the selected shape 

function gave a solution close to other approximate 

methods. We can conclude that the present method is 

a good approximate method for analyzing plates 

subjected to free vibration. 
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